博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
浅谈 Active Learning
阅读量:6252 次
发布时间:2019-06-22

本文共 761 字,大约阅读时间需要 2 分钟。

1. Active Query Driven by Uncertainty and Diversity for Incremental Multi-Label Learning

 

The key task in active learning is to design a selection criterion such that queried labels can improve the classification model most.

many active selection criteria: 

uncertainty measures the confidence of the current model on classifying an instance ,

diversity measures how different an instance is from the labeled data ,

density measures the representativeness of an instance to the whole data set .

 

In traditional supervised classification problems, one instance is assumed to be associated with only one label. However, in many real world applications, an object can have multiple labels simultaneously. Multi-label learning is a framework dealing with such objects.

 

转载地址:http://qmgia.baihongyu.com/

你可能感兴趣的文章
python socket之tcp服务器与客户端demo
查看>>
CesiumLab V1.4 新功能 BIM数据处理
查看>>
Red Hat发布开源PaaS OpenShift Origin
查看>>
python常用模块-time,datetime
查看>>
Linux中常用操作命令
查看>>
httpd基于用户的站点访问控制
查看>>
网页中的各种长宽、坐标
查看>>
lua程序设计之协同程序
查看>>
我的友情链接
查看>>
Nginx配置SSL证书
查看>>
AskoziaPBX 安装
查看>>
Tutorial for adding a library project as git submodule and then using it as a studio Module
查看>>
crontab + mysqldump 解决每天定时自动备份MySQL数据库
查看>>
metasploit扫描vsftp服务器root权限
查看>>
bzoj 3489: A simple rmq problem
查看>>
linux的grub的背景颜色
查看>>
计算器代码
查看>>
我的友情链接
查看>>
c# Linq Where 抛出异常 导致 程序崩溃
查看>>
Excel技巧
查看>>